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a waveguide with oscillating walls
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‡ Center for Theoretical Physics, Seoul National University, Seoul, 151-742, Korea
§ Department of Physics, Kunsan National University, Kunsan 573-701, Korea
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Abstract. We consider classical and quantum electromagnetic fields in a three-dimensional
cavity and in a waveguide with oscillating boundaries of the frequency�. The photons created
by the parametric resonance are distributed in the wavenumber space around�/2 along the axis
of the oscillation. When classical waves propagate along the waveguide in the one direction,
we observe the amplification of the original waves and another wave generation in the opposite
direction by the oscillation of side-walls. In the case of two opposite walls oscillating with the
same frequency but with a phase difference, the interferences are shown to occur because of the
phase difference in the photon numbers and in the intensity of the generated waves.

The Casimir effect [1] is a macroscopic manifestation of the change in the zero-point
electromagnetic energy due to the walls. The time-varying boundary conditions induce
the change of the vacuum states for the quantum electromagnetic fields and the difference
between the initial and final vacuum states results in the photon production. This dynamical
Casimir effect provides the possibility to experimentally observe the vacuum change of
quantum fields. This phenomenon has been extensively studied when one of the walls
oscillates [2–5]. For an almost sinusoidal movement of the mirror, using the formalism
invented by Moore [5] and developed by Fulling and Davies [6], the quantum energy
density has been calculated [7, 8]. For a harmonic oscillation of the mirror Méplan and
Gignoux have shown that a set of frequencies of the oscillating walls leads to an exponential
growth of the energy of a wave [9] and the exponential growth of the number of generated
photons can be easily understood from Floquet’s theorem [10]. The scattering approach is
used to analyse the motion-induced radiation from a vibrating cavity with partly transmitting
mirror(s) [11, 12]. In a classical periodically driven string, the existence of instability (in the
sense of unlimited growth of energy) is proven and demonstrated in [13]. The phenomenon
of photon production has also been investigated in three-dimensional (3D) cavity by using
different methods [14–16]. When the oscillation amplitude of walls is small, in the previous
paper [17] we have developed a perturbation method to calculate the time evolution of the
electromagnetic field in the instantaneous basis [18–21].
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In this letter, using the perturbation method, we wish to consider the photon production in
a 3D cavity and to discuss the propagation of classical electromagnetic fields in a waveguide
with oscillating walls. The photons created by the parametric resonance are distributed in
the wavenumber space around the half of the oscillation frequency along the axis of the
oscillating motion. We find that if one transmits the classical waves into the waveguide
with oscillating walls, the waves are amplified and there are generated waves propagating in
the opposite direction, which corresponds to the photon production in the quantum theory.
When two walls oscillate a kind of interference phenomena take place in the photon numbers
and in the intensity of the generated waves.

In the three dimensions, the electromagnetic field has two directions of physical
polarization. For simplicity, assuming that the electric fieldE(r, t) is polarized in the
z-direction, we can write down [5]

A = A(x, y, t)ẑ
E = Eẑ = −∂A

∂t
ẑ

B = ∂A

∂y
x̂− ∂A

∂x
ŷ.

(1)

Consider a rectangular cavity with sidesqx(t), Ly andLz, where one of the walls oscillates
for a time interval 0< t < T with a small amplitude(ε � 1) according to

qx(t) = Lx(1+ ε sin�t). (2)

In this cavity the field operator can be expanded

A =
∑
n

[bnψn + b†nψ∗n] (3)

using the following instantaneous basis

ψn(x, y|qx(t)) =
∑
k

Qnkϕk(x, y, t) (4)

where

ϕk(x, y|qx(t)) = 2√
qxLyLz

sin
πkxx

qx
sin

πkyy

Ly
(5)

with kx, ky = 1, 2, 3, . . . . From Maxwell’s equations or the wave equation forψn we have

Q̈nk = −ω2
kQnk + 2ε(πkx/Lx)

2 sin�tQnk

+2ε� cos�t
∑
j

gkjQ̇nj − ε�2 sin�t
∑
j

gkjQnj +O(ε2) (6)

with

gjk = (−1)jx+kx
2jxkx
k2
x − j2

x

δjyky (jx 6= kx) (7)

and gjk = 0 for jx = kx . Using the perturbation method developed in [17], the solution
can be written as

Qnk = Q(0)
nk + εQ(1)

nk + · · · (8)

where

Q
(0)
nk(t) =

e−iωk t

√
2ωk

δnk (9)
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and

Q
(1)
nk(t) =

∑
σ,s=±

wskσ,n−
eσ iωk t

√
2ωk

∫ t

0
dt ′ e−i(σωk−s�+ωn)t ′ (10)

with

wskσ,nσ ′ = σ
[
�gkn

√
ωn

ωk

(
s�

4ωn
+ σ

′

2

)
− s (kxπ/Lx)

2

2ωk
δkn

]
. (11)

Here we note that the zeroth-order solution describes the field operator at the static situation:

A =
∑
n

[bnφn + b†nφ∗n] (12)

whereφn = 1√
2ωn

e−iωntϕ(x, y|Lx). After some intervalT of the oscillation of the wall, the
Heisenberg field operator can be written as

A =
∑
n

[anφn + a†nφ∗n] (13)

where

ak =
∑
n

[bnαnk + b†nβ∗nk] (14)

with ∑
n

(|αnk|2− |βnk|2) = 1. (15)

The Bogoliubov coefficientβnk can be read from the solutionQ(1)
nk to the leading order in

ε by retaining dominant terms only(ωT � 1):

βnk = εT w+k+,n−δωn,�−ωk . (16)

Hereafter we introduce the bar notation for the wavenumber vector:n̄ denotes
the wavenumber vector corresponding ton or in the components,(n̄x, n̄y) =
(nxπ/Lx, nyπ/Ly). Noting that the resonance conditions

ωn = �− ωk and n̄y = k̄y (17)

can be explicitly written as†
n̄2
x = k̄2

x − 2�ωk +�2 (18)

we have the following number distribution in the created photons:

Nk =
∑
n

|βnk|2

=
(
εT

2

)2
k̄2
x [k̄2

x − 2�ωk +�2]

ωk(�− ωk) . (19)

This distribution of created photons is anisotropic in the wavenumber space (see figure 1)
and the number of created photons is maximal at the nearest neighbour of

k̄x = �

2
and k̄y = 0 (20)

† There may not exist an integernx satisfying (18) because the discreteness of the frequency and in this case no
photons are created by the parametric resonance. However, for the caseLx � Ly , the frequency can be regarded
as a continuum and in this case the resonance condition will be fulfilled by an integernx . Further, the condition
of parametric resonance admits some discrepancy as seen from the solutions of the Mathieu equation.
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Figure 1. The distribution of created photons in the rectangular cavity when the side atx = qx(t)
oscillates sinusoidally with a small amplitude.Nk is denoted in units of(ε�T/2)2, andk̄x and
k̄y are denoted in units of�.

which comes from the conditions∂Nk/∂k̄x = 0 and ∂Nk/∂k̄y = 0. In fact, the second
condition in (20) means thatky = 1 becauseky = 0 means the vanishing field. Note that
the maximum number of photons are created forωmax = �/2 which is the characteristic
condition of the parametric resonance near the axis of oscillation (with the minimumk̄y).

Now we extend the results to the case when the left and right walls oscillate with
frequencies�L and�R respectively:

Nk = NL
k +NR

k − (−1)kx+nx2
√
NL
k

√
NR
k cosφδ�L,�R (21)

whereNL
k andNR

k are obtained by replacing� in (19) with�L and�R, respectively. Here
φ is the initial phase difference between two oscillations of the walls andnx is a positive
integer satisfying (18) (see the earlier footnote). When�L 6= �R, the number of generated
photons by the parametric resonance is the sum of the photon numbers generated when
the left and right walls oscillate separately. When� = �L = �R, there is an additional
interference term depending on the mode number ofx-component and the phase difference
φ. This is just the interference phenomenon found in the one-dimensional (1D) case [22].
It is worth noting that whenφ = 0 or φ = π whether the interference is constructive or
destructive is determined byx-component mode numbers only. Unlike the 1D case,nx+kx
does not represent the ratio of the oscillation frequency� to the fundamental mode frequency
ω(1,1) =

√
(π/Lx)2+ (π/Ly)2. However, forLy � Lx and k̄y ≈ 0, nx + kx is an integer

close toγ = �/ω(1,1). In this case we have a constructive (destructive) interference when
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φ = π (for γ = 2, 4, . . . γ = 1, 3, . . .) and whenφ = 0 (for γ = 1, 3, . . . γ = 2, 4, . . .).
For a general 3D mode, it is possible to have a constructive (destructive) interference when
φ = π for an odd (even)γ since the mode frequency depends not only on thex-mode
number but also they-mode number.

We now turn to the classical electromagnetic waves propagating in the positivey-
direction in the rectangular cavity with an oscillating wall. When the wall of a cavity is
static the right-going wave is described by

A(x, y, t) =
∑
n

fnNn cos(n̄yy − ωnt) sinn̄xx (22)

with the normalization constantNn =
√

2/ωnπLxLz. Here the sum overn denotes the
sum overn̄x = nxπ/Lx (nx = 1, 2, 3, . . .) and the integration over̄ny , andfn is a real
distribution function of the wavenumber vectorn̄ = n̄xx̂ + n̄y ŷ. There is no boundary
along they-direction andn̄y can be regarded as a continuum limit ofnyπ/Ly (Ly →∞).
Introducing the propagating instantaneous basis

ϕk(x, y|qx(t)) = 1√
πqx(t)Lz

sin
πkxx

qx(t)
eik̄yy (23)

the classical vector potential at any time can be expanded as

A(x, y, t) =
∑
n

[
fn
∑
k

(Qnkϕk + h.c.)

]
. (24)

With the initial condition (9) and the static-wall solution withqx(t) = Lx in (23), the field
(24) becomes (22). The time evolution ofQnk(t) is given by solving the same equation (6)
and we have the same solution. Then for the oscillating wall we have the following wave:

A(x, y, t) =
∑
n,k

fnαnkNk cos(k̄yy − ωkt) sink̄xx +
∑
n,k

fnβnkNk cos(k̄yy + ωkt) sink̄xx

(25)

where βnk is given by (16) to the leading order inε. Thus we have the left-going
wave in they-direction induced by thex-directional oscillation of the wall, with the
amplitude of thekth mode being proportional to

∑
n fnβnk with |∑n f (n̄)βnk|2 =

f (

√
k̄2
x − 2�ωk +�2, k̄y)Nk, wheref (n̄) denotesfn andNk is given by equation (19).

When the two side-walls oscillate, we find the interference phenomena again as in the case
of the quantum field.

Before proceeding to analyse our results, let us survey some related works for the 3D
cavity with oscillating walls. It has been suggested that a fantastic amount of photons can
be generated in a 3D cavity with one plate being performed periodic instantaneous jumps
between two stationary positions [3]. However, this result was obtained by neglecting
the terms coupled to other frequency modes in equation (6), as pointed out in [21],
and the cases not satisfying equation (35) in [3] which corresponds to the condition of
parametric resonance [23] were neglected. In fact, such a large number can be obtained
from the ultraviolet divergence for the instantaneous jump of the frequency. In [19, 21],
the 3D problem was reduced to a decoupled single parametric oscillator. Using the ansatz
Qk = ξk(εt)e−iωk t + ηk(εt)eiωk t together with the assumption thatξk and ηk are slowly
varying functions of time, and averaging over fast oscillations, the coupling terms (second
line in equation (6)) have been neglected again in the effective theory. In our case,
the coupling terms are also considered and they affect the calculation of the Bogoliubov
coefficientβnk.
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One may wonder if the resonance condition (18) cannot be satisfied because of the
discreteness of the frequency in the cavity. As stated in the earlier footnote a small deviation
from the resonance condition is admitted and it can be satisfied in the continuum limit
(Lx � Ly). Thus, the propagating wave in the waveguide(Ly → ∞) provides a good
experimental situation to observe the generation of the wave or the photon production. The
intensity of the generated wave is the order of the intensity of the incident wave multiplied
by the number of produced photons in the quantum theory. After a very short time, we
may observe an amount of created left-going wave if we prepare the incident right-going
wave satisfying the resonance condition (17). For an experimental situation to observeN

photons/s (N = 10 in [12], N = 600 in [21]), it takes only 1/N s to obtain the same
intensity of the generated wave as the incident wave, then the incident right-going wave
will also be amplified by the order of 1+ N according to (15). This phenomenon may be
regarded as the classical counterpart of the photon production in the quantum theory.

This work was supported by the Center for Theoretical Physics (SNU), and the Basic Science
Research Institute Program, Ministry of Education project no BSRI-97-2418. JYJ would
like to thank Dr J H Cho for very helpful discussions.
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